Логические операции
Логические операции, логические связки, логические операторы, функции, преобразующие высказывания или пропозициональные формы (т. е. выражения логики предикатов, содержащие переменные и обращающиеся в высказывания при замене последних какими-либо конкретными их значениями) в высказывания или пропозициональные формы. Л. о. можно разделить на две основные группы: кванторы и пропозициональные (сентенциональные) связки. Кванторы играют для формализованных языков математической логики ту же роль, которую играют для естественного языка т. н. "количественные" ("кванторные") слова: "все", "любой", "некоторый", "существует", "единственный", "не более (менее) чем", количественные числительные и т. п. Характерной особенностью кванторов является - в случае нефиктивного их применения - понижение числа свободных переменных в преобразуемом выражении: применение квантора к выражению, содержащему n свободных переменных, приводит, вообще говоря, к выражению, содержащему n - 1 свободную переменную, в частности, пропозициональную форму с одной свободной переменной применение квантора (по этой переменной) преобразует в высказывание.
Пропозициональные связки (в отличие от кванторов, введение которых знаменует переход к логике предикатов) употребляются уже в самой элементарной части логики - в логике высказываний. В формализованных логических и логико-математических языках они выполняют функции, вполне аналогичные функциям союзов и союзных слов, употребляемых для образования сложных предложений в естественных языках. Так, отрицание ù истолковывается как частица "не", конъюнкция & истолковывается как союз "и", дизъюнкция   ?- как (неразделительное) "или", импликация É - как оборот "если..., то...", эквиваленция ~ - как оборот "тогда и только тогда, когда" и т. п. При этом, однако, соответствие между Л. о. и средствами естественного языка отнюдь не взаимно однозначно. Во-первых, потому, что высказывания, по определению, могут принимать лишь два "истинностных значения": "истину" ("и") и "ложь" ("л"), так что пропозициональные Л. о. можно рассматривать как различные функции, отображающие некоторую область из двух элементов в себя; поэтому число различных n-местных (т. е. от n аргументов) Л. о. определяется из чисто комбинаторных соображений - оно равно 2n. Во-вторых, в формализованных языках математической логики игнорируются любые смысловые (и тем более стилистические) оттенки значений союзов, кроме тех, что непосредственно определяют истинностное значение получающегося сложного предложения. В свою очередь, в качестве Л. о. рассматриваются подчас и такие связки, содержательные аналоги которых в обычном языке, как правило, не имеют специальных наименований; таков, например, "штрих Шеффера" ½ в нижеследующей таблице, где приведён полный перечень всех   ?двуместных пропозициональных Л. о. (в первых двух столбцах помещены истинностные значения некоторых "исходных" высказываний р и q, в остальных - значения высказываний, образуемых из них посредством указанных сверху Л. о.).       
Тождественная истина   
Тождественная ложь   
P   
Отррицание p   
q   
Отрицание q   
Конъюнкция   
Антиконъюнкция (штрих Шеффера)   
Дизъюнкция   
Антидизъюнкция   
Эквиваленция   
Антиэквиваленция   
Импликация   
Антиимпликация   
Обратная импликация   
Обратная антиимпликация     
p   
q   
и   
л   
p   
ù p   
q   
ù q   
p&q   
P÷q   
pÚq   
p  q   
p~q   
p  q   
pÉq   
p  q   
pÌq   
pËq     
и   
и   
и   
л   
и   
л   
и   
л   
и   
л   
и   
л   
и   
л   
и   
л   
и   
л     
и   
л   
и   
л   
и   
л   
л   
и   
л   
и   
и   
л   
л   
и   
л   
и   
и   
л     
л   
и   
и   
л   
л   
и   
и   
л   
л   
и   
и   
л   
л   
и   
и   
л   
л   
и     
л   
л   
и   
л   
л   
и   
л   
и   
л   
и   
л   
и   
и   
л   
и   
л   
и   
л    
Поскольку в таблице сведены все мыслимые двуместные Л. о., соответствующие всевозможным "четырехбуквенным словам" из "и" и "л", записанным по вертикали в её столбцах, то естественно, что среди этих 17 Л. о. есть и "вырожденные" случаи: первые две "связки" вообще не зависят ни от каких "аргументов" - это константы "и" и "л" (понятно, что таких "нульместных" связок имеется ровно   ), далее идут   ?"одноместных связок" (каждая из которых зависит лишь от одного из аргументов р или q) и только затем уже 16-2-4 = 10 собственно двуместных Л. о. Можно далее рассматривать   ?трёхместных Л. о. и т. д.; оказывается, однако, что уже небольшой части приведённых Л. о. достаточно для того, чтобы посредством их суперпозиций (т. е. последовательного применения) выразить любые n-местные Л. о. для любого натурального n. Такими функционально полными наборами связок являются, например, ù и &, ù и   , ù и É и даже одна-единственная связка ½. Поскольку логика высказываний может быть изоморфно (см. Изоморфизм) интерпретирована в терминах логики классов, для каждой Л. о. имеется аналогичная теоретико-множественная операция; совокупность таких операций над множествами (классами) образует т. н. алгебру множеств. См. Алгебра логики.? Лит.: Чёрч А., Введение в математическую логику, пер. с англ., т. 1, М., 1960, її 05, 06 и 15.
? Ю. А. Гастев.